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S U M M A R Y  
It is shown that the mathematical formulation of the plastic-elastic torsion of a cylindrical bar with cross section S 
and that of optimal stopping of Brownian motion on S with its boundary absorbing, with cost of motion per unit of 
time a constant and with stopping costs described by a surface of constant slope on the boundary of S both lead to the 
same partial differential equation with the same free boundary conditions. The well-known membrane-sandhill 
analogy of Nfidai is here then also a very useful interpretation of the optimal stopping problem. 

Also the discrete models for both problems are considered, their analogy is shown ; and some numerical procedures, 
in particular an L.P. formulation, are pointed out. 

I. Introduction 

The mathematical formulation of the plastic-elastic torsion phenomenon of a cylindrical bar 
leads to a partial differential equation with unknown boundaries. In many books on plasticity 
the membrane-sandhill analogy is used to illustrate the solution of the just mentioned partial 
differential equation and to elucidate the role of the free boundary. 

The central problem in optimal stopping theory of processes evolving in time is the deter- 
mination of an optimal stopping time such that an associated cost function reaches a minimum. 
The solution of such problems frequently amounts to finding the optimal set of stopping states, 
i.e. optimal stopping is realized if upon entrance of the process into such a state the process is 
stopped. The determination of such optimal stopping sets is actually a problem with unknown 
boundaries. 

In the present study it will be shown that optimal stopping of Brownian motion on the cross 
section of the bar with its boundary absorbing states, with stopping cost function a surface 
congruent with that of the maximal sandhill on the cross section (see Section 4) and with con- 
stant cost for motion per unit of time leads to the same mathematical problem as that of plastic- 
elastic torsion. Similarly, the finite difference approximations of the plastic-elastic torsion and 
of the optimal stopping are identical. 

The finite difference approximations are usually applied to obtain numerical solutions. 
Since several numerical procedures for discrete optimal stopping problems have been developed, 
these techniques may be of use also for the numerical evaluation of plastic-elastic torsion 
problems. 

The membrane-sandhill analogy of Nfidai (see Section 4) is often used to illustrate the plastic- 
elastic torsion phenomenon. From the discussions in the next section it will be seen that this 
analogy is also useful to obtain an insight in the optimal stopping of Brownian motion; 
although here, however, a very special cost function is considered (that congruent with the 
sandhill) it is readily seen that this is not essential, i.e. the analogy is easily extended to other 
type of cost functions. 

2. The discrete mechanical model 

Consider a hammock with square meshes (side = c) stretched over a rectangular window with 
sides a and b. Over this rectangular is a roof of which the four faces have the same slope ~ with 
the plane of the rectangle, see figure. 
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Figure 1. 

At the inner nodes of the hammock forces of equal magnitude p are applied, positive in the 
upward direction. The strings of the hammock are not fixed to each other at the internal nodes 
and are all stretched with the same force s. For p sufficiently large all internal nodes will be 
pressed against the roof. 

For given p and s it is required to determine the equilibrium position of the hammock. 
Denote by w(x, y) the surface of the roof and by ~(x, y) the equilibrium state of the node 

initially at point (x, y). 
It is readily seen that for small displacements of the nodes the conditions of equilibrium for 

a node are 

pc 
4s + Acq~=0,  if ~ b < w ,  for (x ,y)eU~,  

pc 
4 - ~ + A c q S > 0 ,  if q ~ = w ,  for ( x , y ) eUi ,  

= 0 ,  for (x, y) E Ub, 
where 

(2.1) 

U i d-----~f {(X, y): x = m c ,  y = n c ;  m = l  . . . . .  M - l ;  n = l  . . . . .  N - l } ,  

U ~f {(x,y): x = m c ,  y = n c ;  m = 0  . . . .  , M ;  n = 0  . . . . .  N} ,  

U b %f U - U , ,  (2.2) 

Ao (x, y) y-c)+ y). (2.3) 
The conditions (2.1) are obviously equivalent with 

�9 = min w, 4ss + A~q~+q5 , (x, y)e U~., 

= 0 ,  (x, y)e U~. (2.4) 

3. Optimal stopping, discrete model 

Let {z,, n=0 ,  1 . . . .  } denote the position after n steps of a point subjected to a symmetric 
random walk on U (cf (2.2)) with the states of Ub being absorbing states and with transition 
probabilities from (x, y) to neighbouring states equal to �88 for (x, y)e  Ui. Let n be a stopping 
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time* for the process {z,, n=0,  1 . . . .  }, i.e. for every n the event {n=n} depends only on 
z,,, m = 0  . . . . .  n. Since the entrance time into the boundary is finite with probability one, and 
has a finite expectation, all stopping times are finite and have finite expectation. Denote by 
~, the stopping process belonging to the stopping time n, i.e. 

~ , = z ,  for n < n ,  

= z ,  for n_->n. (3.1) 

With every stopping process a cost function is associated" As long as n < n a cost k > 0 has 
to be paid per transition to a neighbouring point, while stopping of the process at a point 
(~, 1/) involves a cost w(~, t/), with 

w(~ , r / )>0  for (~,r/)eU,, 

= 0 for (4, t/)eUb. (3.2) 

Hence for a given stopping time n the expectation of the total costs of the with n associated 
stopping process (cf. (3.1)), when started in ~0 =(x, y), is given by 

c~(x, y) %f E {kn+w(z . ) lZo  = (x, y)}, (x, y)e U ,  (3.3) 

with z, = (~, q) if the process stops at (~, q). 
Define 

4~(x, y) d~f inf q5 (x, y), (x, y) e U ,  (3.4) 

i.e. q5 is the infimum of the expected costs over all possible stopping processes. 
A stopping time a o is called optimal if for the associated stopping process the expected costs 

are equal to �9 for all (x, y) e U, i.e. ao describes our optimal policy if we ar6 compelled to play 
this game. Starting the process at (x, y) and acting optimally, if an optimal policy exists, we 
decide to stop immediately i.e. pay w(x,  y) if this is less or equal to the sum of the cost k of 
making one step and the average expected cost when starting in a neighbouring point of(x, y), 
hence ( 4  (2.3)) 

tb = m i n { w , k +  AccI)+eb } for (x, y ) e U i ,  (3.5) 

4~=0  for (x, y)~ U b, 

where the second relation follows from (3.2). 
Taking for the stopping cost function w in (3.5) the "roof" function w of the preceding section, 

it is seen that the determination of the optimal stopping process and that of the equilibrium 
state of the hammock are identical. If k = pc/4s then (x, y) is a stopping state if here w = 4~, 
i.e. the node of the hammock at (x, y) touches the roof. 

For  optimal stopping of discrete time parameter Markov chains with a finite state space 
containing at least one absorbing state a large number of results (cf [1], [2] ) are available. 
Note that (3.5) formulates the dynamic programming functional equations for the process. 

Putting 

q50 %f C + 7 j - ~b, (3.6) 

where ~ :  U-,f0,  oo) is the unique solution of 

k + Ac Tt = O , (x, y)e  Ui , (3.7) 

=0 ,  (x, y) Ub, 
and 

do, ( dof (3 8) C -- max w -  (xm~v , Wo = C + T - w > O ,  

* Remark: If V~ U and the process z, started in Zoe U- V is stopped as soon as it enters V then the entrance time 
into V is a stopping time. 
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then the relations (3.5) are equivalent with 

~o = max {Wo, Acq~0+~o}, (x, y)e Ui, 

= C (x, y)~ Ub. (3.9) 

Here 4% represents the optimal gain if no gain or costs are associated with transitions, whereas 
stopping at (x, y) yields a gain w0 (x, y). 

The system (3.9) is the standard form of optimal stopping processes as discussed in [1]. 
Applying the results obtained in [1] to (3.9), and interpreting them for (3.5) on behalf on the 
equivalence of (3.5) and (3.9), shows that for the optimal stopping process formulated by (3.5) 
an optimal policy exists for which the optimal cost function q5 is uniquely determined by (3.5) 
with its set T~ of stopping states given by 

rs = {(x, y): (x, y)~ U,  �9 = w}. (3.10) 

Further, the sequence q~,, n = 1, 2 . . . . .  recursively defined by 

q~l = w for (x, y ) ~ U ,  

c b , + l = m a x { w , k + A c c b , + ~ b , } ,  n = l ,  2 . . . .  ; ( x , y ) e U i ,  

= 0 ,  (x, ub, (3.11) 

converges from above monotonically to ~ for every (x, y)~ U. 
Moreover, the determination of the solution of (3.5) can also be formulated as a linear 

programming problem. This L.P. problem for (3.5)reads 

q5 = 0 for (x, y)e Ub, 

A c ~ + k  >O,  ~<= w for (x, y)eU~, (3.12) 

Z(x,y)~v, q~ maximal. (3.13) 

Obviously, the latter formulation describes the problem as a variational principle with 
constraints given by (3.12). Actually it shows that of all solutions of 

= 0  for (x,y)  eUb and A~q~+k>0 for (x,y) eU~ 

we need the maximal solution dominated by w. 
The formulation (3.11) as well as (3.12), (3.13) are well suited for numerical evaluation of 

the solution. 
From the results of the present and of the preceding section it is seen that the problem of the 

deflection of a hammock bounded by a roof w has the same mathematical formulation as the 
optimal stopping problem for a symmetric random walk discussed in this section. 

4. Plastic-elastic torsion 

If the hammock of Section 1 is replaced by a membrane stretched, with internal tension t per 
unit of length, over the rectangle and submitted to a constant upward pressure q per unit 
of surface then the relations which determine the deflection ~ in the equilibrium state are 
(4. [5]). 

q + Acb=O if q ~ < w ,  for ( x , y ) e S - B ,  
t 

and 

q + Aeb >_ O if ~ =  w for (x, y)~ S - B  
t - -  ~ ' 

~ = 0 ,  

045 0~ 
q~' ~xx and ~ -  are continuous on S,  

cy 

(4.1) 

(4.2) 

(4.3) 
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with 
r 62 

A =- 0-~ + @2, (4.4) 

S %f {(x, y): O<_x<_a,O<y<b} ,  St %r ((x, y): O < x < a , O < y < b } ,  

Sb %f S - S i ,  

B the boundary of the set {(x, y): �9 = w}, 

The relations hold for the case of small deflections of the membrane ; (4.1) expresses the 
equilibrium conditions of an elementary part of the membrane ; (4.2) represents the boundary 
condition, i.e. the membrane is fixed at the edges of the rectangle ; the continuity of the deri- 
vatives of q5 in the equilibrium state stems from the fact that the only external forces on the 
membrane in the region Si are pressures (line loads would lead to discontinuities in the deriva- 
tives). 

The present formulation is the famous membrane-sandhill analogy of Nfidai [3] for the 
plastic-elastic torsion of a prismatic bar with rectangular cross section. For the latter situation 
4~ represents the stress function from which the stress distribution in the cross section can be 
derived. In the domain where �9 touches the "roof", i.e. ~b = w, plastic deformation occurs, in the 
complementary domain of the cross section the deformation is elastic. 

The "roof" surface w (see Section 2), which is a surface of constant slope, can be physically 
realized by putting the maximum amount of dry sand on a horizontal plate of the same shape 
as the cross section of the bar. At every point of the surface so obtained its slope is the natural 
slope of the sand, it is determined by the friction between the sand grains, this slope is the 
constant ~ of Section 2. This property of a surface of constant slope and the similarity between 
the mathematical formulation of plastic-elastic torsion and that of small deflections of a 
membrane under pressure bounded by a surface of constant slope on its rim clarifies the name 
membrane-sandhill analogy. 

Obviously, the conditions (4.1) are equivalent with 

dP = min{w 'q -d2+d2A~+~}  for ( x , y ) ~ S - B ,  

= 0  for (x,y)eSb,  

~ '  ~x  and ~y  continuous on S ; (4.5) 

here d stands for the unit of length, it is introduced in (4.5) in order that all terms in (4.5) have 
the same dimension. It is readily seen that (2.4) is a finite difference approximation of (4.5). 

5. Optimal stopping of Brownian motion 

Let z~ denote the position at time z of a point subjected to Brownian motion without drift in 
S i (cf (4.4)), the points of the boundary Sb are assumed to be absorbing; D shall stand for the 
diffusion coefficient. As in Section 3 we shall consider stopping times and associated stopping 
processes. Per unit of time that the point moves a cost h > 0 is incurred, whereas stopping at 
(x, y) involves a cost w(x, y), w being the "roof" function of Section 2. For a given stopping 
process with stopping time a and starting at (x, y) the expected costs are given by 

qS(x, y) %f E {ha+w(z;)lz o = (x, y)}, (x, y)6S.  (5.1) 

Before discussing optimal stopping for the process zr we shall consider the costs of sojourn 
in a circle C with boundary F, radius R and center at (x, y), when the process starts at (~, t/) e C 
and is stopped as soon as the moving point reaches F. Let z(~, q) denote the first entrance time 
from (4, t/) into F, then (cf. [2]) 
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(5.2) 

~'(4, ,) ~ h~{~r .)} (5.3) 

are the expected costs of the sojourn in C when starting at (4, t/). Consequently, hRZ/2D may be 
considered as the expected costs of the sojourn time in C when starting at the center of a circle 
with radius R and absorbing boundary. 

Obviously T and its first derivatives are continuous on C. However, if we consider the 
situation that an extra cost h ~ is incurred every time that the moving point passes the boundary 
F~ of a circle C~ with radius �89 and center at (x, y), then the expected costs of the sojourn 
in C, i.e. until the first entrance into F, is still a continuous function of the starting point 
(~, t/), but its derivatives are discontinuous at the points of F1 ; however, such costs (as ha) 
will not be considered in our model. 

The problem of optimal stopping of the process described above with h = 0  has been in- 
vestigated in [2] and in [6]. From the results of [6] applied to our situation it can be shown 
that an optimal stopping time ao exists with cost function 

�9 ~f inf r  (5.4) 

Defining 

T~ ~f {(~, y): r = w}, Tc ~f {(x, y): r < w}, (5.5) 

then the optimal policy is to stop at the points of T~, and to continue at points of T~ until the 
first entrance into T~. Since Brownian motion paths are continuous with probability one, 
�9 will be continuous (cf [6] ), so that since the "roof" function w is also continuous, the set 
T~ is closed; denote by B its boundary. 

For (x, y) ~ T~ denote by C a circle with center at (x, y), boundary F and such that C U F c T~. 
With T(x, y) the first entrance time from (x, y)into F and z,(x,y ) the hitting point of F, so that 
on behalf of symmetry of the Brownian motion z,(~,y) is uniformly distributed on F, it follows 
since stopping at (x, y) is more costly then moving from (x, y) that (cf (5.2)) 

1 f O(z,(x,y))dy+hE{'c(x, y)} (~' Y) -- ~ R  r 

- rO(Z,(,. ,))d7 + r log  dr dfl. (5.6) 

From the continuity of r from (5.6), and from a well-known theorem of potential theory it is 
readily seen that �9 is regular on C and that 

�89162 for (x,y) eT~. (5.7) 

Suppose next that (x, y) e T~ and (x, y) not a point of the boundary B of T~, so that a circle C 
with boundary F, radius R and center at (x, y) exists such that C U F ~ T~, hence 

~b = w for all (4, t/) e C ~ F .  

Since moving from (x, y) is at least as costly as stopping at (x, y) we have 

w(x, y) <_ hE {x(x, y)} + E  {w(z,(~,,))} 
o r  

h+ [E{w(Z,(x,y))}-w(x, y)]/E{'c(x, y)} ~ 0 .  (5.8) 

The "roof" function is a continuous function of constant slope, i.e. 

( Sw~ 2 = ~z=_ constant on S,  (5.9) 
Ux/ + \ ~ y )  
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at all points where the derivatives exist. Obviously, at these points the second derivatives exist 
also, and hence on behalf of a result in [2], the left-hand side of (5.8) has a limit for R~0.  
Proceeding to the limit it follows (cfi [2]) that 

�89 > 0 or equivalently �89 > 0 (5.10) 

for (x, y) an internal point of T~ at which the derivatives of w exist. 
At the points of the boundary B of Fs where q5 = w the derivatives odp/Ox, ~c~/c~y should be 

continuous* (cf. the remarks above about the continuity of ~), so that 

O~b ~w &5 (?w 
0x - t?x' t?y 0y for (x, y)~B, (5.11) 

(cf also [6] for the derivation of the conditions (5.11)). 
The fact that the derivatives of tb should be continuous for all (x, y) ~ S i implies on behalf of 

(5.5) that T~ does not contain points at which the derivatives of w do not exist. 
Consequently, we have from (5.7) and (5.10) 

q~ = rain w , - f f -  + d2Adp+~ for (x, y ) e S - B  

q~ = 0 for (x, y)eSb, 

0q~ ~4 
4>' 0-x' 0 y  are continuous on S �9 (5.12) 

here d stands for the unit of length, it is introduced in (5.12) in order that all quantities in (5.12) 
have the same dimension. 

Obviously, the relations (3.5) are the finite difference approximations of the relations (5.12). 
Moreover, the first relation of (5.12) may be considered as the dynamical programming 
functional equation of the stopping problem, since on behalf of (5.6) and (5.8) we have 

I / q5 = min w, 2 ~ - -  + R2EI@+@+o(R 2) for R - , 0 .  

6. Concluding remarks 

The discussions of the preceding sections show clearly that the free boundary problems 
encountered in plastic-elastic torsion of cylindrical bars, in the deflection of membranes 
bounded by a roof and in optimal stopping of Brownian motion are all of a similar type. 
Although the discussion has been restricted to a simple domain S, i.e. the rectangular, for 
more complicated domains the discussion will not be essentially different as long as its boundary 
is sufficiently regular. The derivation of the mathematical formulation of the plastic-elastic 
torsion as well as that of the membrane-sandhill analogy have been omitted, they may be 
found in [3] and [4]. The derivations of optimal stopping of Brownian motion as given in 
section 5 contain several heuristic arguments; for a more rigorous derivation the techniques 
of [6] should be applied, cf also [2]. It should be emphasized that the membrane analogy is 
extremely helpful in obtaining a good insight in optimal stopping of Brownian motion. 

Finally, in continuum mechanics and heat transfer several interesting free boundary problems 
for the Laplace and the Poisson equation occur, see e.g. [7] ; it is certainly of some interest to 
investigate whether these problems can be formulated in the context of optimal stopping of 
Brownian motion. 

For further and more detailed information of the relations between free boundary problems 
and optimal stopping see [8] and [9]. 

* The cost (roof) function is concave. For a convex cost function with for instance a sharp edge the derivatives need 
not be continuous. 
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